Satellite Imagery. From acquisition principles to processing of optical images for observing the Earth
Satellite Imagery. From acquisition principles to processing of optical images for observing the Earth
Satellite Imagery. From acquisition principles to processing of optical images for observing the Earth
Satellite Imagery. From acquisition principles to processing of optical images for observing the Earth

Satellite Imagery. From acquisition principles to processing of optical images for observing the Earth


Auteur :

This book was written for students and engineers wishing to understand the basic principles behind the acquisition of optical imagery for Earth observation and the ways in which the quality of the images can be optimised.
The book describes a very wide range of subjects from fundamental physics (radiation, electronics, optics) to applied mathematics (frequency analysis), geometry and technological issues.

66 €
En stock

 

Commande avant 16h,
expédié le jour même (lu. - ve.)

 

Livraison express sous 48h.

Rubrique : Espace
ISBN : 9782364930360
Référence : 1036
Année de parution : 2012
This book was written for students and engineers wishing to understand the basic principles behind the acquisition of optical imagery for Earth observation and the ways in which the quality of the images can be optimised.
Intended both for designers and downstream users, the book begins with a detailed explanation of the physical principles involved when a satellite acquires an optical image and then goes on to discuss image processing and its limits as well as the ultimate performance obtained.
It also covers in depth the problems to be solved when designing and dimensioning observation systems so that the reader can become familiar with the various processes implemented for acquiring an optical image.
The book describes a very wide range of subjects from fundamental physics (radiation, electronics, optics) to applied mathematics (frequency analysis), geometry and technological issues.
It draws on work done over many years by engineers from CNES (the French Space Agency), the IGN (the French National Geographic Institute) and ONERA (the French Aerospace Laboratory) in the field of satellite optical imagery.
Référence : 1036
Nombre de pages : 492
Format : 17x24
Reliure : Broché
Rôle
CNES Auteur

I. INTRODUCTION
Philippe LIER (CNES), Christophe VALORGE (CNES)
 

I.1. Some history
 I.2. What is remote sensing?
    I.2.1. Definition
    I.2.2. What is a 'digital image’?
    I.2.3. What is 'Image Quality’?
    I.2.4. Ground processing to correct for remote-sensing effects
 I.3. Some examples of Earth observation applications
    I.3.1. Meteorology
    I.3.2. Mapping
    I.3.3. Intelligence gathering
    I.3.4. Monitoring natural disasters
    I.3.5. Scientific applications
 I.4. A panorama of several Earth observation missions
    I.4.1. The KEYHOLE satellites of the CORONA programme
    I.4.2. The Landsat family, example: Landsat 7
    I.4.3. The SPOT family
    I.4.4. PLEIADES
    I.4.5. American commercial satellites
    I.4.6. Vegetation
    I.4.7. POLDER
    I.4.8. ScaRaB
    I.4.9. CALIPSO’s Infrared Camera
 I.5. Scope of this book
 
II. IMAGE GEOMETRY
Jean Marc DELVIT (CNES), Daniel GRESLOU (CNES), Sylvia SYLVANDER (IGN), Christophe VALORGE (CNES)
 
II.1. Introduction
    II.1.1. Chapter outline
    II.1.2. Introduction to direct location
 II.2. Pre- requisites: Space and Time Reference frames
    II.2.1. Stating the problem
    II.2.2. Reference frames and object-centred coordinate systems
II.2.3. From the Earth to the stars
    II.2.4. Space reference frames
    II.2.5. The time references
    II.2.6. Changing reference frames
 II.3. Geometric principles of acquisition
    II.3.1 The different types of sensor
    II.3.2. Time-stamping images
    II.3.3. Satellite orbits
    II.3.4. Satellite attitude
 II.4. Geometric modelling of the scene
    II.4.1. General principle
    II.4.2. Review of conic geometry
    II.4.3. Physical modelling of the scene
    II.4.4. Analytical modelling of the viewing geometry
    II.4.5. Refining the geometric viewing model
 II.5. Geometrical processing
    II.5.1. Geometrical corrections
    II.5.2. Image matching and correlation
    II.5.3. 'Downstream' geometric processing
 II.6. Geometric image quality
    II.6.1. Introduction
    II.6.2. User requirements and GIQ
    II.6.3. In-flight geometric image quality
    II.6.4. Summary of requirements and GIQ performance
 II.7. Essential geometrical formulations
    II.7.1. Notations
    II.7.2. Basic formulae
    II.7.3. Detector projection
 II.8. Bibliographical references
 
III. RADIOMETRY
Alain BARDOUX (CNES), Xavier BRIOTTET (ONERA), Bertrand FOUGNIE (CNES), Patrice HENRY (CNES), Sophie LACHERADE (ONERA), Laurent LEBEGUE (CNES), Philippe LIER (CNES), Christophe MIESCH (ONERA), Françoise VIALLEFONT (ONERA)
 
III.1. Introduction
 III.2. Measurement physics
    III.2.1. Introduction
    III.2.2. Definition of radiative parameters
    III.2.3. Optical properties of surfaces
    III.2.4. The atmosphere
    III.2.5. Analysis of radiance at sensor level
 
III.3. Acquisition principle: description of the on-board   imaging system
    III.3.1. Introduction
    III.3.2. Optics
    III.3.3. Detector system
    III.3.4. Electronic system
 III.4. Mathematical model of the image acquisition system
    III.4.1. Calculation of irradiance over the focal plane
    III.4.2. Calculating the number of electrons produced
    III.4.3. Calculating the output signal expressed in digital counts
 III.5. Radiometric modelling of the image acquisition process
    III.5.1. Introduction
    III.5.2. Example 1: IIR CALIPSO radiometric model
    III.5.3. Example 2: the SPOT radiometric model
    III.5.4. Example 3: the PLEIADES-HR radiometric model
    III.5.5. Example 4: the POLDER radiometric model
 III.6. Calibration and measurement of radiometric performance
    III.6.1. Introduction
    III.6.2. Relative calibration in the field of view, or 'normalisation'
    III.6.3. Absolute calibration
 III.7. Radiometric resolution
    III.7.1. Introduction
    III.7.2. Example: PLEIADES radiometric noise model
    III.7.3. Estimation of instrument noise
 III.8. Summary and future prospects
 III.9. References
 
IV. IMAGE RESOLUTION
Sébastien FOUREST (CNES), Philippe KUBIK (CNES), Christophe LATRY (CNES), Dominique LEGER (ONERA), Françoise VIALLEFONT (ONERA)
 
IV.1. Introduction
 IV.2. Image spot and MTF
    IV.2.1. Review of the theory of stationary linear systems
    IV.2.2. Imagers
    IV.2.3. Expression of the image spot and MTF
    IV.2.4. Overall model
 IV.3. Sampling
    IV.3.1. The effects of sampling
    IV.3.2. Impact on system design
 IV.4. Image interpolation
    IV.4.1. General introduction
    IV.4.2. Classical interpolation
    IV.4.3. 1-D interpolating filters
    IV.4.4. 2D interpolating filters
    IV.4.5. Interpolation in the Fourier domain
 IV.5. Treatments for improving resolution
    IV.5.1. Introduction
    IV.5.2. Deconvolution
    IV.5.3. Denoising
    IV.5.4. Panchromatic/multispectral Fusion
 IV.6. In-flight methods of measuring MTF and focusing errors
    IV.6.1. Introduction
    IV.6.2. Methods for measuring focus error
    IV.6.3. Methods for measuring MTF
    IV.6.4. Conclusion
 IV.7. Conclusion
IV.8. Annexe 1: The Fourier transform
    IV.8.1. The continuous Fourier transform
    IV.8.2. Going from the continuous to the discrete world: sampling
    IV.8.3. A suitable tool for the sampled world: the Discrete Fourier transform
    IV.8.4. The finite discrete Fourier transform
IV.8.5. Summary: from continuous Fourier transform to finite discrete
Fourier transform
    IV.8.6. FDFT properties
    IV.8.7. Use of the FDFT
    IV.8.8. Conclusion
 IV.9. Annexe 2: wavelets and packets
    IV.9.1. Limitations of the frequency representation
    IV.9.2. Wavelets
 IV.10. Annexe 3: Interpolation and B-splines
    IV.10.1. Basic properties of interpolating functions
    IV.10.2. Spline construction
 IV.11. Bibliography
 
V. SYSTEM DIMENSIONING
Philippe KUBIK (CNES)
 
V.1. Objective and definitions
 V.2. Dimensioning principles
    V.2.1. Geometry
    V.2.2. Radiometry
    V.2.3. Resolution
 V.3. Design examples
    V.3.1. SPOT type mission, 10 m
    V.3.2. Satellite with metre-scale resolution
 V.4. Conclusions
 
VI. IMAGE COMPRESSION
Catherine LAMBERT (CNES), Christophe LATRY (CNES), Gilles MOURY (CNES)
 
VI.1. Introduction
 VI.2. General overview of image compression
 VI.3. Compression and image quality
    VI.3.1. Inadequacy of the usual criteria
    VI.3.2. Consideration of the overall onboard/ground image system
    VI.3.3. User application criteria
 VI.4. Diversity of compression techniques in the space field
    VI.4.1. Predictive coding techniques
    VI.4.2. DCT encoding techniques
    VI.4.3. Lapped Orthogonal Transform (LOT).
    VI.4.4. Wavelet transform compression
    VI.4.5. Future prospects
    VI.4.6. Bibliography
 

VII. IMAGE SIMULATION
Philippe LIER (CNES), Christophe VALORGE (CNES)

 VII.1. The purpose of image simulation
    VII.1.1. Review: the concept of 'Image Quality’
    VII.1.2. Simulation: a design tool
    VII.1.3. Simulation: an interface tool
 VII.2. General principles of image simulation
    VII.2.1. Simulating the input scene either for the sensor, or for
    pre-processing
    VII.2.2. Simulating the sensor
    VII.2.3. Simulating the ground processing
    VII.2.4. Summary
    VII.2.5. Examples of how this processing system is used at CNES
    VII.2.6. The limitations of 'traditional’ simulation
    VII.2.7. Comments
 VII.3. Image synthesis and 3D simulation
    VII.3.1. Reminder: modelling scenes in '2.5D’
    VII.3.2. Modelling scenes in 3D
    VII.3.3. Pre-processing in 3D
    VII.3.4. 3D simulation
 VII.4. Outlook for image simulation
 
VIII. CONCLUSION
Philippe LIER (CNES)
 
VIII.1. The resolution race
VIII.2. Other criteria
    VIII.2.1. The revisit interval
    VIII.2.2. The spectral bands
    VIII.2.3. Stereoscopic imagery
    VIII.2.4. Operational capability
 VIII.3. High resolution imagery for everyday use?
 
 


Livres de l'auteur CNES

Vous aimerez aussi